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Deficiency of cathepsin K prevents inflammation and bone erosion in
rheumatoid arthritis and periodontitis and reveals its shared
osteoimmune role
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Using rheumatoid arthritis (RA) and periodontitis mouse models, we demonstrate that RA and peri-
odontitis share many pathological features, such as deregulated cytokine production, increased
immune-cell infiltration, increased expression of Toll-like receptors (TLRs), and enhanced osteoclast
activity and bone erosion. We reveal that genetic deletion of cathepsin K (Ctsk) caused a radical
reduction in inflammation and bone erosion within RA joint capsules and periodontal lesions, a
drastic decrease in immune-cell infiltration, and a significant reduction in osteoclasts, macrophages,
dendritic and T-cells. Deficiency of Ctsk greatly decreased the expression of TLR-4, 5, and 9 and their
downstream cytokines in periodontal gingival epithelial lesions and synovial RA lesions. Hence, Ctsk
may be targeted to treat RA and periodontitis simultaneously due to its shared osteoimmune role.

� 2015 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

Periodontitis is one of the most common oral inflammatory
diseases. This disease may result in the destruction of periodontal
tissues and alveolar bone, which ultimately leads to tooth loss
[1,2]. Multiple bacterial infections are important factors for peri-
odontitis [3]. During this process, different kinds of cells partici-
pate in the immune response, such as polymorphonuclear
neutrophils (PMNs), macrophages, dendritic cells (DCs), and T cells
[4]. The affected cells can induce the expression of many cytokines,
including the receptor activator of nuclear factor kb ligand (RANKL)
which can promote osteoclast (OC) formation and the following
periodontal bone resorption [5–7].

The development of rheumatoid arthritis (RA) is followed by the
activation of the immune system, resulting in the infiltration of
immune cells in the synovial membrane of the joint [8]. RA is con-
sidered to be a chronic, immune-regulated inflammatory disease,
which will cause an excessive inflammatory response, cartilage
and bone destruction, and eventually structural damage and loss
of function. RA is associated with significant morbidity and an
increased risk of mortality [9]. A variety of studies have demon-
strated a close association between RA and periodontitis [10–12].
Periodontitis and rheumatoid arthritis are inflammatory diseases
enhanced by dysregulation of the immune response in the progres-
sion of these diseases [11,13]. Clinical studies show that RA is more
prevalent in individuals with periodontitis and vice versa in com-
parison to the general population [14,15]. One of the major obsta-
cles to finding a cure for both RA and periodontitis is that the
unknown factors that drive persistent immune cellular activation
and inflammatory mediator synthesis remain elusive [4,16].

Toll-like receptors (TLRs), which are an important part of the
innate and adaptive immune system, have been proposed as
driving the inflammation in RA. In the development of periodonti-
tis, TLRs have also been shown to have a critical role in the
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periodontitis lesion area [17]. Cathepsin K (Ctsk) is a peptidase C1
protein family member that is known to be a lysosomal cysteine
protease [18]. The function of cathepsin K in periodontitis has
not been characterized and the role of Ctsk in TLR signaling
pathways in periodontitis is unknown. There is limited study on
the role of Ctsk in TLR signaling pathways in RA. The common
pathogenesis between RA and periodontitis mediated by Ctsk has
not yet been evaluated.

Therefore, we sought to understand the underlying pathogene-
sis by which Ctsk regulates both RA and periodontitis. Ctsk knock-
out mice were used in this study to investigate the function of Ctsk
in the development of RA and periodontitis. Our data reveal that
RA and periodontitis have a common aberrant high TLRs signaling
pathogenesis and suggest the critical osteoimmune function of
Ctsk in rheumatoid arthritis and periodontitis.
2. Materials and methods

For complete Materials and Methods, please see Supplemental
Materials and Methods.

2.1. Infection with bacterial strains

The bacteria used in this study were Porphyromonas gingivalis
W50 (ATCC: 53978), Treponema denticola (ATCC: 35404) and
Tannerella forsythia (ATCC: 43037). These strains were grown
under anaerobic conditions (80% N2, 10% H2, and 10% CO2) at
37 �C in a Coy anaerobic chamber and were cultured [19,20]. An
equal volume of sterile 2% (w/v) CMC was added, mixed thor-
oughly, and 100 ll (5 � 109 cells of P. gingivalis per ml, 5 � 109 cells
of T. denticola per ml and T. forsythia per ml) was administered by
oral and anal topical application according to a previously
described protocol [21,22].

2.2. Animals

Seven to eight-week-old female wild-type (WT) C57BL/6J mice,
purchased from the Jackson Laboratory were used for the periodon-
titis experiments. Ctsk�/�mice were previously generated in our lab
with the C57BL/6J background for periodontitis experiments [23].
C57BL/6J background Ctsk�/� and WT mice were crossed with
human TNF-transgenic mice (hTNF-tg) mice to generate hTNF-tg
Ctsk�/� and hTNF-tg WT mice for RA experiments. For the periodon-
titis experiments, mice were divided into 4 groups: (1) wild-type
(WT) normal group; (2) Ctsk�/� normal group; (3) WT disease group
(bacterial infection); and (4) Ctsk�/� disease group (bacterial infec-
tion). For the RA experiments, mice were divided into 4 groups: (1)
WT mice, (2) Ctsk�/� mice, (3) hTNF-tg mice, and (4) hTNF-tg
Ctsk�/� mice. Experiments in the current study were performed in
triplicate on three independent occasions, and N = 5 for each group,
resulting in a total sample number of N = 15 for each group. This
study was approved by the University of Alabama at Birmingham
(UAB) Institutional Animal Care and Use Committee (IACUC). The
animals were maintained at the UAB animal facility and were given
distilled water and allowed to feed freely.

3. Results

3.1. Knockout of Ctsk resulted in bone protection and the decrease of
TLRs expression in the periodontitis lesion area

To test the possible role during the progression of periodontitis
lesions mediated by Ctsk, we used the periodontal disease mouse
model established by our previous study [21]. Samples from WT
and Ctsk�/� mice with or without infection were analyzed by
methylene blue staining eight weeks after initial infection
(Fig. 1A). Vertical and horizontal observation showed that there
was no obvious bone resorption in the control groups without infec-
tion. Bone resorption was significant in the WT periodontitis group,
but not in the Ctsk�/� periodontitis group (red arrows) (Fig. 1A).
However, the hTNFtg mice did not show spontaneous periodontitis
at 16 weeks (Fig. S1). H&E staining of the periodontal tissues showed
that bone destruction, as well as monocyte infiltration (red arrows),
increased in the WT periodontitis group (Fig. 1B). Quantitative anal-
ysis of the alveolar bone resorption area and the length of alveolar
bone loss revealed that each measurement was significantly higher
in the WT periodontitis group than in the Ctsk�/�periodontitis group
(Fig. 1C and D). TLRs are important for the innate immune response
in inflammatory diseases. In bacterial-mediated inflammation, TLR4
recognizes lipopolysaccharide (LPS), TLR5 recognizes flagellin, and
TLR9 recognizes bacterial DNA and CpG oligodeoxynucleotide,
which are critical antigens that cause an immune response [24]. In
the periodontitis lesion area, the expression of TLR4, 5, and 9 at eight
weeks decreased significantly in the Ctsk�/� periodontitis group
compared to the WT periodontitis group (Fig. 1E–J).

3.2. Ctsk knockout provided bone protective effects as well as a
decreased innate immune response in RA

In our current study, we used the human TNF-transgenic mouse
model to confirm the results (Fig. 2). X-ray analysis also showed
significant bone destruction (white arrow) in the knee joint and
hind ankle joint in the hTNF-tg group compared to the hTNF-tg
Ctsk�/� group at 24 weeks (Fig. 2A–D). SO staining also showed
that the cartilage has been protected in the hTNF-tg Ctsk�/� group
(Fig. 2E and F). We also confirmed the expression of Ctsk in WT,
Ctsk�/�, hTNF-Tg and Ctsk�/� hTNF-Tg groups at 24 weeks.
(Fig. S2). Ctsk was successfully depleted in the Ctsk knockout group
in the RA and periodontitis lesion areas. To explore whether these
TLRs are involved in the development of RA in the same manner as
in the periodontitis lesion areas, and to determine whether Ctsk
has an effect on the immune response during the progression of
RA, we performed immunohistochemistry (IHC) staining of the
RA lesion areas of different groups at 24 weeks (Fig. 2G–L). A signif-
icant increase of TLR4-positive, TLR5-positive, and TLR9-positive
cells was observed in the RA lesion area in hTNF-tg mice compared
to Ctsk�/� hTNF-tg mice, Ctsk�/� mice, or WT mice (Fig. 2G–L).

3.3. Ctsk knockout reduced immune-related cells in RA and
periodontitis lesion areas

DCs are antigen presenting cells which will differentiate after
exposure to proinflammatory cytokines, immune complexes, or
endogenous inflammatory factors that are recognized by TLR
[25]. Our results showed that there was significantly higher
expression of the DCs marker CD11c in the RA lesion area in
hTNF-tg mice compared to hTNF-tg Ctsk�/� mice (Fig. 3A–C).
Similarly, there was a significant increase of CD11c-positive DCs
in the periodontitis lesion area in the WT periodontitis group com-
pared to the Ctsk�/� periodontitis group (Fig. 3D–F). This indicates
that knockout of Ctsk has an impact on antigen-presenting cells in
the RA and periodontitis lesion areas. We further performed IHC
analysis of the macrophage-specific marker F4/80 on mutant
mouse hTNF-tg RA (Fig. 4A). Quantification results showed that
the F4/80-positive cells were lower in the Ctsk�/� RA groups
(Fig. 4B). The current results revealed that OCs were activated in
the RA group (Fig. 4C). The OC numbers in the Ctsk�/� hTNF-tg
groups were significantly lower than in the hTNF-tg groups
(Fig. 4D). Since activation of OCs not only depends on osteoblasts,
but also the immune system, this indicates that Ctsk has an impor-
tant function in the immune system. Interestingly, the IHC stain



Fig. 1. Knockout of Ctsk resulted in bone protective effects in the periodontitis lesion area. (A) Methylene blue staining of the maxilla tooth from the WT and Ctsk�/� groups
with and without infection at 8 weeks after initial infection. Red arrows indicate vertical bone resorption. White dot areas indicate horizontal bone resorption. (B) H&E stain
of the periodontal tissue from the WT and Ctsk�/� groups with and without infection. Columns 2 are enlarged images of boxed areas in column 1. Red arrows indicate
monocyte infiltration. Scale bar: 100 lm. (D) Quantification of horizontal alveolar bone resorption area in ‘‘A’’. (C) Quantification of alveolar bone resorption in ‘‘B’’. (E–J) IHC
stains and quantification of TLR4-positive (E, H), TLR5-positive (F, I), and TLR9-positive (Brown) (G, J) cells in gingival areas in the WT and Ctsk�/� groups with and without
infection at 8 weeks. Red arrows indicate positive cells. Inf: infection. **: P < 0.01, ***: P < 0.001. N.S: no significance. N = 5, repeated three times. Scale bar: 25 lm.
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and Tartrate-resistant acid phosphatase (TRAP) stain similarly
demonstrated that Ctsk has a role in immune cells as well as osteo-
clasts since F4/80-positive macrophages and TRAP-positive cells
decreased significantly in the Ctsk�/� periodontitis group compared
to the WT periodontitis group (Fig. 4E–H). In order for Ctsk to have
an effect on the immune system, the immune cells must express
Ctsk. Therefore we determined whether Ctsk was expressed in
macrophages or DCs by co-localization analysis (Fig. 4J). The
results showed that Ctsk was expressed in macrophages and DCs.
To further confirm our findings, we applied CD3 immunofluores-
cence (IF) stain to examine T cell activation (Fig. 5). T lymphocytes
are important immune effector cells that can be divided into
cytotoxic T lymphocytes, helper T lymphocytes, and suppressor T
lymphocytes. The co-surface marker of lymphocytes, CD3, can be
used to detect activated T lymphocytes in inflammation [26]. The
results showed that CD3-positive T cells decreased significantly
in the lesion areas in the Ctsk�/� hTNF-tg group and Ctsk�/� peri-
odontitis group (Fig. 5). These results indicated that Ctsk knockout
may affect the immune response that occurs in both the RA and
periodontitis lesion areas.

3.4. Inhibition of Ctsk reduced the expression of pro-inflammatory
cytokines in the RA and periodontitis lesion areas

In the periodontitis lesion area at 8 weeks, the protein expres-
sion of TNF-a, IL-6 and IL-12 was significantly decreased in the
Ctsk�/� periodontitis group when compared to the WT periodonti-
tis group (Fig. 6A). qRT-PCR showed that the mRNA expression of
TLR genes (i.e. TLR4, TLR5 and TLR9) was significantly increased in
the WT periodontitis group compared to the other groups
(Fig. 6B). ELISA was used to evaluate the effect of Ctsk knockout
on the protein expression levels of TNF-a, IL-1a, IL-6, IL-17, and
IL-10, which are related to the TLR signaling pathway in inflamma-
tory RA tissues. In the RA lesion area at 24 weeks, the protein
expression of TNF-a, IL-6, IL-1a, and IL-17 was significantly
increased in hTNF-tg mice compared to the normal control group
(Fig. 6C). qRT-PCR revealed that the mRNA expression of Ctsk,
pro-inflammatory genes (i.e. IL-12b) and TLR genes (i.e. TLR4,
TLR5 and TLR9) was significantly increased in the hTNF-tg group
compared to the other groups (Fig. 6D). To confirm the possible
role of Ctsk in the immune cell response to bacterial-induced
inflammation through TLR, we used LPS and CpG to stimulate
mouse bone marrow (MBM)-derived dendritic cells in vitro
(Fig. 6E–G). Our in vitro data showed that Ctsk knockout greatly
inhibited cytokine expression-related NF-jB activation. The
expression of TNF-a, IL-6 and IL-12 in WT and Ctsk�/� DCs
increased in CpG- and LPS-stimulated groups compared to unstim-
ulated groups (Fig. 6E). However, the expression of inflammatory
cytokines in the Ctsk�/� CpG stimulation group was significantly
lower than in the WT CpG stimulation group. In the LPS stimula-
tion group, although expression of inflammatory cytokines
increased in WT and Ctsk�/� MBM DCs, the difference between
the two groups was not statistically significant (P > 0.05). The
mRNA expression of IL-6 was consistent with the ELISA results,
which was significantly lower in the Ctsk�/� CpG stimulation group
than the WT CpG stimulation group. Although IL-6 gene expression



Fig. 2. Ctsk Knockout provided bone protection in rheumatoid arthritis (RA). (A–D) Radiographic and quantification analysis of joints from the WT, Ctsk�/�, hTNF-Tg and Ctsk�/

� hTNF-Tg groups at 24 weeks. X-ray analysis showed severe joint bone destruction (white arrows). (E, F) Safranin O stain and quantification analysis of joints from different
groups. SO stain showed decreased cartilage in the hTNF-Tg group. Scale bar: 100 lm. (G–L) Immunohistochemical (IHC) stains and quantification of TLR4-positive cells (G, J),
TLR5-positive cells (H, K), and TLR9-positive cells (I, L) in RA lesion areas in different groups at 24 weeks. **: P < 0.01, ***: P < 0.001. N.S: no significance. N = 5, repeated three
times. Scale bar: 125 lm.
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in the LPS-stimulated Ctsk�/� group was much higher than in the
LPS-stimulated WT group, there was no significant difference in
IL-6 protein expression between LPS-stimulated Ctsk�/� and WT
groups. The expression of inflammatory factors (i.e. IL-12b) in the
CpG-stimulated Ctsk�/� group was lower than the CpG-stimulated
WT group, while expression of these inflammatory cytokines
showed an opposite trend in the LPS-stimulated groups (Fig. 6F).
Although Ctsk knockout has a significant impact on TLR9-mediated
expression of inflammatory cytokines, its specific role in the signal
transduction pathway is still unknown. Therefore, we tested the
mRNA expression of MyD88, TRAF6, IRAK1 and IRAK4, which are
important in signal transduction pathways associated with TLR9.
Results showed that Ctsk knockout influenced the CpG-stimulated
expression of MyD88, TRAF6, IRAK1 and IRAK4 in the TLR9 signaling
pathway (Fig. 6G). In the case of LPS stimulation, IRAK1 decreased
in the Ctsk-/- group, the expression of MyD88 and IRAK4 didn’t



Fig. 3. Knockout of Ctsk reduced CD11c-positive dendritic cells in RA and periodontitis lesion areas. (A–C) Immunofluorescence (IF) staining and quantification of CD11c-
positive (Texas red) dendritic cells (DCs) in the RA lesion area in different groups at 24 weeks. Boxed areas in ‘‘A’’ are magnified in columns 1 and 2 of ‘‘B’’. Boxed areas in ‘‘B’’
are magnified in column 3 of ‘‘B’’. White arrows indicate positive cells. (D–F) IF staining and quantification of CD11c-positive (Texas red) DCs in the periodontitis lesion area in
different groups at 8 weeks. Boxed areas in ‘‘D’’ are magnified in columns 1 and 2 of ‘‘E’’. Boxed areas in ‘‘E’’ are magnified in column 3 of ‘‘E’’. White arrows indicate positive
cells. S: synovial, AD: articular disc, G: gingival, Inf: infection. *: P < 0.05, **: P < 0.01. N.S: no significance. N = 5, repeated three times. Scale bar: 50 lm.
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change in the Ctsk�/� and WT groups, and TRAF6 levels increased in
the Ctsk�/� group compared to the WT group (Fig. 6G).

4. Discussion

A previous study showed that knockout of Ctsk may partially
inhibit bone destruction in hTNFtg mice [27]. Our current study
suggests that the pathogenesis by which Ctsk mediates the
immune response in RA and periodontitis is similar in the two dis-
eases. Retrospective studies in recent years show that there is an
interaction between periodontal disease and rheumatoid arthritis,
compared with healthy people. The incidence rate of periodontal
disease is higher in patients with rheumatoid arthritis, and in peri-
odontal disease patients the incidence of rheumatoid arthritis is
higher [28]. Recent studies have established the link between RA
and periodontitis, claiming that periodontitis might be a causal fac-
tor that will enhance the severity of RA and vice versa, and these
two diseases are highly associated at the epidemiological level
[10,14]. Synovial tissue in the RA lesion area is considered to be
the inflammation center and a source of osteoclast differentiation
for the development of RA [29–31], while periodontitis is always
preceded by inflammation of gingival tissue (gingivitis) [32]. Our
present findings demonstrate that DCs, macrophages, and T cells
are infiltrated extensively in the RA synovial tissue and periodon-
titis gingival tissue. The synovial fibroblasts and gingival epithelial
cells may have similar functions in RA and periodontitis: initiating
the innate response, activating immature DCs to mature DCs, and
mediating inflammation cytokine expression and OC activation
which further tissue damage. The inhibition of Ctsk results in the
suppression of immune cell expression, osteoclast activation, and
the prevention of articular cartilage erosion and alveolar bone loss
in the hTNF-tg mouse models and periodontitis mouse model
respectively. Cathepsin K was first discovered and cloned by our
lab [33,34], which was reported to play important function in
immune cells [35]. Additional studies are needed to distinguish
between these possibilities [36]. Previous studies have shown that
Ctsk knockout has no effect on OC differentiation [23]. However,
we found a significant decrease in OCs in the Ctsk�/� RA and
Ctsk�/� periodontitis groups, indicating Ctsk’s role in inflammation.
Our current results suggest that Ctsk may mediate RA and peri-
odontitis bone destruction not only through its known function
in OCs, but also through immune cell-mediated activation of OCs.



Fig. 4. Knockout of Ctsk reduced macrophages and osteoclasts in RA and periodontitis lesion areas. (A, B) IHC stains and quantification of F4/80 positive (Brown) cells in RA
lesion areas in different groups at 24 weeks. Second column of ‘‘A’’ are enlarged images of red boxed areas. Red arrows indicate positive cells. (C, D) TRAP stain and
quantification of osteoclasts in RA lesion areas in different groups at 24 weeks. (E, F) IHC stains and quantification of F4/80 positive (Brown) macrophages in the periodontitis
lesion areas of the WT and Ctsk�/� groups with and without infection at 8 weeks. Red arrow and white inset box of enlarged image show positive cells. (G, H) TRAP stain and
quantification of osteoclasts in the periodontitis lesion areas in different groups at 8 weeks. (I) Normal serum at the same area served as a negative control. (J) Ctsk localizes to
DCs and macrophages in the periodontitis lesion area. White arrows and white inset boxes of enlarged images show double positive cells. Inf: infection, DIC: differential
interference contrast. **: P < 0.01, ***: P < 0.001. N.S: no significance. N = 5, repeated three times. Scale bar: 100 lm.
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Asagiri et al. further demonstrated that knockout of Ctsk can
reduce the inflammation of RA in a rat model [37]. Macrophages
and DCs are critically involved in the pathogenesis of RA as shown
in our current studies. Not only do they produce a variety of pro-
inflammatory cytokines and chemokines, but they also contribute
to the cartilage and bone destruction in RA [38]. Our current study
showed that Ctsk may play a critical role in the immune response
of RA and in the periodontitis lesion area. IF was used in our study
to detect the expression of Ctsk in immune cells, which would be a
prerequisite for Ctsk having any function in the immune system.



Fig. 5. Knockout of Ctsk reduced CD3-positive T cells in RA and periodontitis lesion areas. (A–C) IF staining and quantification of CD3-positive (GFP) T cells in the RA lesion
area in different groups at 24 weeks. Boxed areas in ‘‘A’’ are magnified in columns 1 and 2 of ‘‘B’’. Boxed areas in ‘‘B’’ are magnified in column 3 of ‘‘B’’. White arrows indicate
positive cells. (D–F) IF staining and quantification of CD3-positive (Texas red) T cells in the periodontitis lesion area in different groups at 8 weeks. Boxed areas in ‘‘D’’ are
magnified in columns 1 and 2 of ‘‘E’’. Boxed areas in ‘‘E’’ are magnified in column 3 of ‘‘E’’. White arrows indicate positive cells. S: synovial, AD: articular disc, G: gingival, Inf:
infection. **: P < 0.01, ***: P < 0.001. N.S: no significance. N = 5, repeated three times. Scale bar: 50 lm.
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Our findings showed that Ctsk is expressed in immune cells, such
as macrophages and DCs. We have shown that knocking out Ctsk
has reduced the pro-inflammatory cytokine expression in RA and
periodontitis lesion tissues. Many of these effector molecules
appear to be common to both diseases. While the effects of cytoki-
nes on normal cellular processes are important, it is their
purported roles in the immune response, which may involve exces-
sive production, dysregulation, or inadequate inhibition, that may
be critical for the progression of both RA and periodontitis disease.
Periodontitis has very similar cytokine profiles to RA based on our
current study, which consists of persistently high levels of pro-
inflammatory cytokines (e.g. TNF-a). In a rheumatoid arthritis rat
model, Asagiri et al. verified that Ctsk possibly mediates the
immune response of DCs in vitro [37]. These results showed that,
as a dual role protein, Ctsk not only participated in osteoclastic
bone resorption, but was also involved in immune cell-mediated
inflammation.

Importantly, the present study provides new insights into the
possible connections of the immune response to RA and periodon-
titis. In the periodontitis mouse model, knockout of Ctsk resulted in
similar decreases in TLR4, 5 and 9. Although the RA models we
used do not involve bacteria-induced inflammation lesions, our
data suggested that TLR4, 5 and 9 also decreased significantly in
the hTNF-tg Ctsk�/� group. This indicates that TLR4, 5 and 9 may
play similar functions of mediating the immune response in RA
and periodontitis lesion areas and that Ctsk may regulate this pro-
cess. ELISA and qRT-PCR results confirmed the in vivo IHC stain in
both RA knee tissues and periodontitis lesion tissues. These results
underscore the possibility that future therapies could block Ctsk in
RA and periodontitis by specific small molecule inhibitors or gene
therapy. However, the pathogenesis by which Ctsk functions in
TLRs activation is still unclear. The current view is that cathepsins
may make TLRs form a correct protein structure through
proteolytic processing, thereby initiating the antigen recognition
process [39,40]. MyD88-related transcription level, which is an
important component of the activation of the downstream path-
way, was significantly inhibited in Ctsk�/� DCs with CpG stimula-
tion. However, MyD88, TRAF6, IRAK1, and IRAK4 transcription
levels were not fully inhibited in LPS-stimulated Ctsk�/� DCs.

In conclusion, our study first demonstrated that bone resorption
and exaggerated inflammatory host responses in periodontitis and
RA are mediated by Ctsk through the TLR4, 5 and 9 signaling path-
ways in DCs. These observations highlight a central pathogenic role
for Ctsk in these settings and identify Ctsk as a directed, logical



Fig. 6. Ctsk knockout or inhibition reduced the expression of pro-inflammatory cytokines in vivo (RA and periodontitis lesion areas) and in vitro (WT and Ctsk�/� DCs). (A)
Cytokine expression levels of TNF-a, IL-6 and IL-12 in the periodontitis lesion area were detected by ELISA at 8 weeks. (B) qRT-PCR of TLR genes in different groups. b-actin
was used as an endogenous control. C, Cytokine expression levels of TNF-a, IL-1a, IL-6, IL-17 and IL-10 in the RA lesion at 24 weeks were detected by ELISA. (D) qRT-PCR of
pro-inflammatory genes (i.e. IL-12b) and TLR genes in the RA lesion area at 24 weeks. (E) MBM-derived DCs from WT and Ctsk�/� mice were stimulated with LPS (200 ng/ml)
or CpG (1 lM/ml) for 12 h. The production of TNF-a, IL-6, and IL-12 was measured by ELISA. (F) qRT-PCR analysis of TNFa, IL-6, and IL-12b expression in WT and Ctsk�/�MBM-
derived DCs stimulated with LPS or CpG as above. (G) MBM-derived DCs from WT and Ctsk�/� mice were stimulated with LPS or CpG for 12 h. The expressions of TLRs
downstream signaling pathway were detected by qRT-PCR. Inf: infection. *: P < 0.05, **: P < 0.01, ***: P < 0.001. N.S: no significance. N = 5, repeated three times.
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target for the suppression of cartilage and periodontal bone
destruction. Indeed, optimal control of RA or periodontitis inflam-
mation is most likely to preserve a range of homeostatic properties
for both diseases. Collectively, Ctsk may be one possible target to
treat RA and periodontitis simultaneously due to its shared
pathogenesis.
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